The Pennsylvania State University

Department of Economics

Econ 390, Section 101, Summer 2007 Homework Assignment # 3

Solution

Problem 1

Insurance company has 1500 clients - truck drivers. Each client is insured against a car accident. Probability that an accident happens while a client is insured is 0.10. Find the probability that 100 - 200 drivers will be involved in accidents.

Hint: Think about approximation to the binomial distribution.

The hint is to use Normal approximation to the binomial distribution. Note that n is quite large, p = 0.10, thus np(1-p) = 135 > 9. All conditions are satisfied and we can use normall approximation to the binomial distribution.

Let

$$Z = \frac{X - np}{\sqrt{np(1 - p)}} = \frac{X - 150}{\sqrt{135}} \approx \frac{X - 150}{11.6190}$$

$$P(100 \le X \le 200) = P\left(\frac{100 - 150}{11.6190} \le \frac{X - 150}{11.6190} \le \frac{200 - 150}{11.6190}\right) =$$

$$= P\left(-4.3033 \le Z \le 4.3033\right) = F(4.3033) - F(-4.3033) \approx 0.999$$

Problem 2

"Drinkers Inc" purchases an expensive refrigerator. Producer claims that refrigerators of this type work for 5 years on average. Assume that probability that the unit dies in t years has an exponential distribution. Find the probability that refrigerator will die in 6-8 years.

Hint: Use information on the average to recover parameters of the distribution.

Exponential distribution should be used. $\lambda = 1/5 = 0.2$.

$$P(6 \le t \le 8) = F(8) - F(6) = (1 - e^{-0.2*8}) - (1 - e^{-0.2*6}) = e^{-0.2*6} - e^{-0.2*8} = e^{-1.2} - e^{-1.6} \approx 0.0993$$

Problem 3

Kate has collected data on gas prices in two cities. One is located in California and the other is in Pennsylvania. Gas prices depend on a great number of events and could be treated as random. Denote prices in CA as X and prices in PA as Y. The collected data has been recorded in the form of Joint Probability distribution

		Price in PA (Y)			PDFX	E(X)	σ_X^2	
		2.90	2.95	3.00	3.05	P(X)	x * P(x)	$(x - \mu_X)^2 P(x)$
	2.90	0.05	0.03	0.01	0.00	0.09	0.2610	0.00072
Price in	2.95	0.18	0.09	0.03	0.01	0.31	0.9145	0.00048
CA(X)	3.00	0.03	0.19	0.09	0.01	0.32	0.9600	0.00004
	3.05	0.01	0.05	0.18	0.04	0.28	0.8540	0.00102
PDF of Y	P(Y)	0.27	0.36	0.31	0.06	1.00	2.9895	0.0023
E(Y)	y * P(y)	0.7830	1.0620	0.9300	0.1830	2.9580		
P(Y X=3)	$= \frac{P(Y=y \cap X=3)}{P(X=3)}$	$\frac{0.03}{0.32} \approx 0.0938$	$\frac{0.19}{0.32} \approx 0.5938$	0.2813	0.0313	1.00		
E(Y X=3)	$= y \frac{P(Y=y \cap X=3)}{P(X=3)}$	0.2720	1.7517	0.8439	0.0955	2.9631		
$\sigma_Y^2 =$	$(y - \mu_Y)^2 P(y)$	0.0009	0.0000	0.00055	0.00051	0.0020		

a) Write down the marginal probability function P(X) of X

The 7-th column of the table above (sum across columns)

b) Write down the marginal probability function P(Y) of Y

The 7-th raw of the table above (sum across rows)

c) Find the mean of X and the mean of Y (Hint: Use your marginal probability functions)

$$E(X) = \sum_{x \in X} (x * P(x)) = 2.9895$$

$$E(Y) = \sum_{y \in Y} (y * P(y)) = 2.9580$$

d) Find the conditional probability function of Y for X = 3.00.

The 9-th raw of the table

$$P(Y = y \mid X = 3) = \frac{P(Y = y \cap X = 3)}{P(X = 3)}$$

e) Use your answer for d) to calculate conditional expectation of Y, when X = 3.00.

The 10-th raw of the table:

(**Hint**: You have to find E(Y|X=3.00))

$$E(Y|X=3.00) = \sum_{y \in Y} \left(y * P(Y=y \mid X=3) \right) = \sum_{y \in Y} \left(y * \frac{P(Y=y \cap X=3)}{P(X=3)} \right) \approx 2.9631$$

f) Find correlation between X and Y:

We have to find first

$$E(XY) = \sum_{x \in X} \sum_{y \in Y} x * y * P(x, y) =$$

$$= 2.90 * 2.90 * 0.05 + 2.95 * 2.90 * 0.03 + 3.00 * 2.90 * 0.01 + 3.05 * 2.90 * 0.00 +$$

$$+2.90 * 2.95 * 0.18 + 2.95 * 2.95 * 0.09 + 3.00 * 2.95 * 0.03 + 3.05 * 2.95 * 0.01 +$$

$$+2.90*3.00*0.03+2.95*3.00*0.19+3.00*3.00*0.09+3.05*3.00*0.01+$$
 $+2.90*3.05*0.01+2.95*3.05*0.05+3.00*3.05*0.18+3.05*3.05*0.04=$
 $=0.7642+2.6786+2.8440+2.5574=8.8442$

Hence,

$$Cov(X,Y) = E(XY) - \mu_X * \mu_Y = 8.8442 - 2.9895 * 2.9580 = 0.0013$$

The only remaining part is to calculate σ_X and σ_Y , where:

$$\sigma_X = \sqrt{\sum_{x \in X} (x - \mu_X)^2 P(x)} \approx \sqrt{0.0023} \approx 0.0475$$

and

$$\sigma_Y = \sqrt{\sum_{y \in Y} (y - \mu_Y)^2 P(y)} \approx \sqrt{0.0020} \approx 0.0443$$

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y} = \frac{0.0013}{0.0475 * 0.0443} \approx 0.6178$$

Problem 4

Suppose that you toss a pair of dice and write down the values of the faces from each die.

a. What is the population distribution for one die?

Die outcome	Probability
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

b. Determine the sampling distribution of the sample means obtained by tossing two dice.

(Hint: to answer question b think of all combinations that could lead to 2 points, 3 points and etc.)

Total points	Sample	\overline{x}	Prob. of \overline{x}
2	(1 1)	1.0	1/36
3	$(1\ 2), (2\ 1)$	1.5	2/36
4	$(1\ 3), (3\ 1), (2\ 2)$	2.0	3/36
5	$(1\ 4), (4\ 1), (2\ 3), (3\ 2)$	2.5	4/36
6	$(1\ 5), (5\ 1), (2\ 4), (4\ 2), (3\ 3)$	3.0	5/36
7	$(1\ 6), (6\ 1), (2\ 5), (5\ 2), (3\ 4), (4\ 3)$	3.5	6/36
8	$(2\ 6), (6\ 2), (3\ 5), (5\ 3), (4\ 4)$	4.0	5/36
9	$(3\ 6), (6\ 3), (4\ 5), (5\ 4)$	4.5	4/36
10	$(4\ 6), (6\ 4), (5\ 5)$	5.0	3/36
11	$(5\ 6), (6\ 5)$	5.5	2/36
12	(6 6)	6.0	1/36

Problem 5 (Only if we have time to cover CLT in class)

Given a population with mean $\mu = 100$ and variance $\sigma^2 = 81$, the central limit theorem applies when the sample size $n \ge 25$. A random sample of size n = 25 is obtained.

a. What are the mean and variance of the sampling distribution for the sample means?

$$E(\bar{X}) = \mu = 100$$

and

$$\sigma_X = \frac{\sigma}{\sqrt{n}} = \frac{9}{5} = 1.8 \text{ or } \sigma_X^2 = 3.24$$

b. What is the probability that $\bar{x} > 102$

$$P(\bar{X} > 102) = P\left(\frac{\bar{X} - 100}{1.8} > \frac{102 - 100}{1.8}\right) = P(Z > 1.11) = 1 - P(Z \le 1.11) = 1 - 0.8665 = 0.1335$$

c. What is the probability that $98 \le x \le 101$

$$P(98 \le \bar{X} \le 101) = P(\frac{98 - 100}{1.8} \le \frac{\bar{X} - 100}{1.8} \le \frac{101 - 100}{1.8}) = P(-1.11 \le Z \le 0.56) = 0$$

$$= F(0.56) - F(-1.11) = F(0.56) - (1 - F(1.11)) = 0.7123 - (1 - 0.8665) = 0.5788$$